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A meshless approach is developed and used to predict buckling loads of discretely assembled composite panels
made from skin and stiffeners. Particular emphasis is given to stringer run-outs within a stiffened panel, where
abrupt eccentricity can trigger very large transverse displacements of the skin in front of the run-out tip and perturb
the internal in-plane loads distribution. The effect of load eccentricity is included in the formulation. The final set of
nonlinear equations is obtained by combining von Kiarman’s formulation for moderately large deflections in plates
with an extended Timoshenko approach for small initial perturbations. Solutions are calculated by means of a
Rayleigh—Ritz method in conjunction with a Galerkin technique. Orthogonal eigenfunctions are employed to expand
the variables of interest in generalized Fourier series. An iterative algorithm is proposed to calculate buckling loads.
Limits of applicability, convergence of results, and further potential exploitations are discussed. Numerical results
are compared with those from finite element analysis and other numerical approaches.

Nomenclature
A,D = laminate in-plane and transverse stiffness
matrices
A*, D* = matrices of in-plane and flexural flexibility in
partially inverted laminate constitutive equations
B = laminate coupling stiffness matrix
B* = coupling matrix in partially inverted laminate
constitutive equations
e = eccentricity
e = vector of eccentricity coefficients e;
e; = generalized coordinates of the neutral plane
~ function
G,H,. H = matrices defined in Eqs. (44—46)
L, 1 = length and width of panel
N, M = unit width stresses and bending moment vectors
N,,N,,N,, = internal in-plane loads per unit width
N, Nw[ = external in-plane loads per unit width
NXV,O
o = vector defined in Eq. (19)
Uy, Vo = in-plane displacement of neutral plane in x and y
directions
w = out-of-plane displacement
w; = generalized coordinates of the displacement
o function
X,Y,X,Y = beam eigenfunctions
I',I,,I', = circulation functions
AV = = equilibrium stress function for perturbation
loading
Exs £y, Exy = in-plane strains
€%, 69,6, = in-plane strains at neutral plane level
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n; = eigenfunctions of compatibility stress function

& = generalized coordinates of the compatibility
stress function

I1 = total potential

Iy = total potential of internal in-plane loads

I, = potential of external transverse loads

11, = internal elastic potential energy

®; = transverse displacement eigenfunctions

®; = eccentricity eigenfunctions

0 = weight functions

v = equilibrium stress function for uniform loading

compatibility stress function
equilibrium stress function
stress function
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I.

ITH the introduction of the total carbon design philosophy in

aircraft structures, it is becoming increasingly important to
obtain further weight savings with composite cocured/cobonded
assemblies. Sizing of composite stringer terminations is becoming
one of the most critical phases of preliminary design of novel aircraft
because of the potential for significant weight savings. In stiffened
aircraft panels, it is often necessary to terminate the stringer at a
particular location within the span because of the taper angle in the
wings (Fig. 1), or because of other features, such as cutouts,
manholes, or passenger/cargo doors in the fuselage.

In cocured and cobonded skin/stringer panels with stringer
terminations, failure often occurs due to delamination and/or
debonding between skin and stiffener at the stiffener’s foot tip. Such
failure is in contrast to overall strain limitations and usually occurs at
much lower levels. Several past and recent studies [1-4], have shown
that the onset of debonding may be caused by differential stiffness at
the interface between the skin and the cocured/cobonded surface.
Skin deflection due to eccentricity of the in-plane loads and/or
pressure causes the onset of peeling moments and membrane
tractions that trigger the first and the second crack opening modes [5].

Furthermore, stress concentrations and free edge effects, due to
anisotropy, can exacerbate the failure phenomenon by triggering
significant localized through-thickness effects. Currently, the most
accepted designs entail running the stiffener out midbay (Fig. 1b), or
atrib locations to minimize the peeling phenomena (Fig. 1a). Yet, the
latter design solution requires the skin to be thickened by adding
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Fig. 1 Stringer terminated: a) under the rib and b) midbay.

local pad-up [6] to avoid premature skin buckling onset; thus adding
undesirable and penalizing extra weight. In fact, it is a currently
accepted design requirement that this type of structure cannot buckle
below design limit loads [7]. The constraint can be even more
restrictive for thick-sectioned panels that are sometimes not allowed
to buckle before the design ultimate load. These limiting constraints
are mostly due to the lack of methodical understanding of the causes
of disbond and the structural behavior after a crack/disbond initiates.
Falzon and Davies [6] have shown that in the prebuckling regime,
failure often occurs due to crack initiation at critical locations
(Fig. 2).

Falzon and Davies [4] proposed a finite element model (FEM) to
predict crack initiation in unbuckled panels, which shows good
correlation with tests. Meeks et al. [7] demonstrated that the same
failure mechanism occurs in postbuckled structures, confirming that
the disbond is the main failure mode for composite assemblies
undergoing large transverse displacements. Despite the fact that
FEM has proven able to provide realistic predictions of initial
disbond [8], the large computational times, in conjunction with the
rather significant sensitivity of the results to the mesh size, hinder its
use as a main tool for preliminary phases of aircraft design. There is
an objective need for simple analytical solutions that guarantee
considerable reduction of computational efforts, yet capture the
essential mechanics of the problem. Furthermore, a major advantage
related to closed-form solutions is that they are readily imple-
mentable in parametric form for optimization techniques.

Mittelstedt [9] proposed a closed-form solution for buckling of
composite assemblies with periodic boundary conditions. Results
were encouraging but unfortunately not applicable to panels with
stringer terminations. In such structures, the eccentricity of the in-
plane loads induces localized transverse bending, which affects the
prebuckling behavior, and could significantly influence calculation
of buckling loads. Cosentino and Weaver [ 10] proposed an analytical
linear approach for accurate calculation of buckling loads of panels
with stringer terminations. The novelty of the approach was in the
modeling of the in-plane loads redistribution induced by the
perturbation of a discontinuous stiffener within the panel. The model
works well when applied to structures with negligible flexural and
membrane anisotropy, but its predictions might be inaccurate when
these effects become significant. In some cases, and especially in
thin-walled configurations, panels that are unsymmetrically lami-
nated or symmetric but not balanced, can exhibit a material induced
coupling between membrane and flexural response or axial and shear
in-plane deformations, respectively. For example, let us isolate a

panel from the surrounding structure. If the panel is loaded in axial
compression, in which the two opposite unloaded edges are totally or
partially restrained against Poisson’s ratio effects and shearing
deformations, then additional kinematically induced shearing and
transverse axial loads are induced, which can be significantly large
[11]. As a result, the prebuckling deformed shapes, the buckling
loads, and the buckling modes could be appreciably affected because
the deformed configurations are skewed in appearance.

This work aims to develop a fast and reliable approach for the
calculation of buckling loads of composite panels with stringer
terminations to be used in conjunction with a method to predict
disbond in the prebuckling regime. This analysis improves the method
fordisbond prediction proposed by Cosentino and Weaver [5] in terms
of mechanical response and provides an accurate analytical cal-
culation of the critical buckling loads. Indeed, if the analyzed structure
is not allowed to buckle, it is essential to ensure that the calculated
disbond loads do not exceed the critical buckling loads. Therefore, a
self-contained approach that is reliable, robust, and which does not
require extreme computational efforts is presented.

II. Outline of the Approach

The purpose of this analysis is to establish a methodology to
accurately predict buckling loads of unsymmetrically laminated
composite panels with stringer terminations. To achieve this,
expressions are developed which govern the prebuckling regime in
terms of deformations and stress redistributions.

Two coupled nonlinear equations (namely, transverse equilibrium
and compatibility) are derived in Sec. III that use the transverse
displacement and Airy’s stress function. To facilitate an analytical
solution to the inherently nonlinear, coupled fourth-order differential
equations, a simplifying step-by-step- procedure is developed. First,
the discontinuous stiffnesses A* and B* are represented in continuous
form by a generalized Fourier series to allow a Galerkin representation
of the compatibility equation. The eccentricity e is represented in
continuous form by a generalized Fourier series to allow a Rayleigh—
Ritz representation of transverse equilibrium. Then the Airy’s stress
function €2 is modeled as the sum of two functional components:

1) An equilibrium stress function ¥, comprises two components:
one fulfills the in-plane equilibrium and the mechanical boundary
conditions W, and the other satisfies the perturbation to the stress
field due to the stiffener, Ay. This function alone only satisfies the
equilibrium and compatibility equations governing the isotropic case.

~. [
Critical locations

Fig. 2 Critical locations in composite panel with stringer termination.
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2) A compatibility stress function W, is introduced to satisfy the
compatibility equation in terms of orthotropy and anisotropy. W,
takes into account the perturbation induced by asymmetry and
orthotropy and is expanded in a generalized Fourier series. To not
perturb the global internal and boundary equilibrium already satis-
fied by the equilibrium stress function ¥,, a particular form was
chosen for W.. The function satisfies the nullity of mechanical
boundary conditions in conjunction with average nullity of the
internal loads.

To find particular solutions in closed form, the boundary condi-
tions must be determined a priori. This is done by schematizing the
domain as a system of springs in series and parallel [10].

A hybrid Ritz/Galerkin solution strategy was used to solve the two
nonlinear equations. The transverse equilibrium equation was solved
using an energy based Rayleigh—Ritz technique in conjunction with
the Castigliano’s principle of least work. A Galerkin technique was
employed to discretize and solve the compatibility equation. The
strategy chosen allows the derivation of analytical Fourier series
expansions for both the transverse displacement and the Airy’s stress
function, which intrinsically satisfy the natural boundary conditions.
As such, no additional calculations are required to minimize induced
errors, thus improving the performances of the proposed methodo-
logy in terms of calculation time.

In the following sections it will be shown that satistying equili-
brium and compatibility equations is a key requisite to capture the
significant in-plane stress redistributions that affect the struc-
tural behavior of eccentric structures. The calculation of buckling
loads is performed by means of an ad-hoc iterative algorithm.
Rationales for the algorithm and convergence studies are provided
in Secs. IV and V.

III. Prebuckling Model Derivation

Letus focus on acomposite panel with a stringer terminated within
the bay (Fig. 3). To employ the classical two-dimensional theory of
plates, the three-dimensional assembly depicted in Fig. 3ais reduced
to the equivalent single layer represented in Fig. 3b. The use of von
Karman’s nonlinear field equations allows two variables only: that is,
the transverse deflection w and the stress function €2, to be fully
representative of the state of stress throughout the domain [10].
Following Cosentino and Weaver [8], the beam properties of the
stiffeners are locally homogenized over the plate as represented in
Fig. 4b. The global domain is therefore partitioned into subdomains
(fields). Different sets of A, B, and D matrices and local value of
eccentricity e are assigned to each subdomain (Fig. 4).

Three different subdomains are identified: 1) skin subdomain,
2) skin/flange subdomain, and 3) skin/flange/web subdomain.

Each variable is hereby indicated with the subscript s, s f, and s fw,
when referring to the value of that variable over the skin, skin/flange,
and skin/flange/web subdomains, respectively.

z
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Following von Kdrméan , the membrane strains and the curvatures
are expressed as functions of the transverse displacement as follows:
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It is assumed that all of the considered assemblies are sufficiently
thin, so that both of the preceding kinematical assumptions and the
plane state of stress required by classical laminate theory are
satisfied. According to this assumption, the constitutive equations of
the laminate expressed in the partially inverted form are [12]

HEFEAN

A stress function €2 is introduced such that

N,=Q,, N =0 N

xy —

—-Q Xy (4)

$XX?

The first governing equation of the elastic problem is the trans-
verse equilibrium equation, which is derived according to the
principle of stationary potential energy [8]:

8(1-[11) + 1-IN + HQ) =0 (5)
where
f / k' Mdxdy =~ / / k" D*k dx dy
/ / PN e (E0Y 4 aps (22
xz By 66 Bxay
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Fig. 3 Analyzed structure: a) three-dimensional representation, and b) equivalent two-dimensional single layer scheme.
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Fig. 4 Longitudinal section: a) real structure and b) properties condensation.
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The second governing equation is the compatibility equation,
which under the assumption of linear elasticity reads [13]

32
a_y2 (ATQ,y + AR o — AT Q y — BTjw . — Blhwy,

—2Bjw ) + 88_; (A2, + A5Q (= AZQ , — By w
82
dxdy

+ A% 1y + BGw o + Bow ,, + 2Bgew ) =0 )

= Bhw = 2B3w ) + 2= (AR ), — A2

Differentiation and reordering gives

ATy = 2452 1y + QAT + AR gy — 245682 1y
+ A% Q e + AT, — Al )€ 4y + (24T, — 34T,
+ Afe.) Ry T (AT, —3A% , + A% )Ry T (245,

Ae) 2 e + (A7) + AT — Aley) 2,5y — (Afg
F AZg e = Aboay) Loy T ATy + AT 0 — A% )R
= B3\ W e + (B — 2B3)W oy + (2B — By,
= BR)W iy + (B = 2Bi6)W ayyy — Blowyy, — (B
—2B5 JW r + (236()y + B¢ . ZBTM - 4B;6,x)w,xxy
+ (2B, + By, —2B3, , — 4B )W 1y + (Bgy
—2B%, Jw yy, + (Bg) ., — By, — B3y o)W +2(Bs
= Blg,y — Bl )Wy + (B oy — Blayy — Bo )W =0 (10)

SXXYY

To solve Egs. (5) and (10) by means of Rayleigh—Ritz and/or the
Galerkin technique, suitable generalized Fourier series expansions
for the two variables of interest, w and €2, are sought. The same kind
of expansions are required for the eccentricity e and the components
of A* and B* matrices. These parameters are already defined in a
discontinuous piecewise form over the entire domain (Figs. 3b and
4b). Nevertheless, Eqs. (5) and (10) require these parameters to be
expressed in a continuous and differentiable form.

The following expressions are suitable for the transverse displace-
ment w, the eccentricity e, and the components of the matrices A*
and B* [8], [10]:

MxN
w=) wig,x.y) (11a)
i=1
MxN
e=) adi(xy) (11b)
k=1
MxN
Al + Za,, P (12a)
MxN

By, + Z b}, P (12b)

where
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Fig. 5 Domain schematization for edge axial xwise loads derivation.
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(p:[XIYI XIYZ*""XIYNW X2Y1 XZYZ""aXZYNs"'vaYl XMY2 XMYN]T, W=[w1 wz,..‘,waN]T (13)
¢=[X\Y, XY, ... X\Yy XX, XoVp ... XoVg,.... XYV, XpY, XpYgl'. —e=[e; en....epyl (14)

Functions X,,(x), Y,(y), X,,(x), and Y,(y) are continuous and
indefinitely differentiable. Where possible, it is recommended to use
beam eigenfunctions that satisfy Hilbert’s orthogonality relations [8]
and essential (kinematical) boundary conditions for both the
transverse displacement and the neutral plane function.

The coefficients e, a;f/.k, and b,’fﬁ « are calculated by means of a
Galerkin technique and expressed as follows:

e, =KiIE, (15a)
a?j.k = K;qla,-m (15b)
bl’-‘j_k :K;(;ﬂij,q (15¢)
where
L[l B
E,= / / e(x. )@, (x.y) dxdy (16)
x=0 Jy=0
L Iy -
@y, = / @ an e aey ar
x=0 Jy=
L Iy _
Biru = / ' - sopen ey am)
x=0 Jy=
(A B
Ky, = [ 0 / e, ) drdy (18)
x=0 Jy=

The expansion of the stress function €2 in a generalized Fourier
series is not straightforward and requires a number of steps.
Essentially, it is decomposed into two components: W, and V... The
approach used by Cosentino and Weaver [10] is followed in the
present analysis and briefly described in the following. To evaluate
W, let us consider the panel sketched in Fig. 3b. The first step is to
quantitatively capture the natural boundary conditions. To do this, an
approximate technique is used. Let us assume that the panel is
clamped on the edge x = 0 and loaded by a uniform axial load per
unit width N,y ; on the edge x = [,. The presence of the stiffener
induces in-plane load redistribution. It is reasonable to expect the
load to be channeled through the skin/flange and the skin/flange/web
area, which, as such, carry more load than the skin. The in-plane state
of stress is described by a stress function, and in order to choose a
suitable expression for this, the natural (mechanical) boundary
conditions must be determined a priori.

To derive an approximate axial flow piecewise distribution along
the clamped edge x = 0 (Fig. 5a), the following assumptions are
taken:

1) The in-plane unit width loads N,; are assumed to be constant
within each subdomain, which may be represented as a spring with a
concentrated stiffness.

2) Every straight line parallel to the y axis remains straight after
deformation.

These assumptions do not represent the real state of stress
throughout the domain. However, they are only used to calculate the
natural boundary conditions to be assigned to the stress function.
Nonetheless, because only the stress field at the boundary is of
interest at this stage, the assumption of discrete variation of N, is not
restrictive if the stringer length is sufficiently large G.e., [,/1, is
sufficiently large and [, /1, is also not too small). In such cases, the
skin-to-stiffener load transfer is already completed far from the
boundary, and we may assume that the uniform axial (xwise) strain
condition is reestablished on the two opposite edges x = Oand /, ata
minimum. This description is an adequate representation of actual
stiffener run-outs in stiffened panels.

Under these assumptions, the whole domain is schematized as a
system of springs in series and in parallel (Fig. 5b). After algebraic
manipulations, the following expressions for the piecewise edge load
distribution are obtained:

Ny = —1 Vi=2,...6 (19)

Once the natural boundary conditions are determined for the edge
x = 0 (in piecewise form) and for the edge x = [, both distributions
can be expanded in a Fourier series:

N

Nw'x:o = ZAn Sil’l(()lny) (203)
n=1
N

Nuoliei, 2 ) B, sin(e,y) (20b)
n=1

Let us focus on the generic nth components of the series (20a) and
(20b) acting on the edges x = 0 and [, respectively (Fig. 6a).

Using the principle of superposition, the generic stress field
represented in Fig. 6a can be decomposed into two stress fields.
Because the coefficients B, represents the Fourier’s expansion of the
constant in-plane stress applied on the edge x = [, the two stress
fields schematized in Fig. 6b and 6¢ are 1) a constant axial stress field
equal to the constant axial load N, ; acting upon the free edge x = [,
(Fig. 6b) and 2) a perturbation AN, = Ny, — N,4, caused by the
presence of the reinforcement (Fig. 6¢) and acting as an external load
on the constrained edge.

IV A, =IO 3B,

33355 34, — By

ATT11Fa. 3By afTTT ¥ 3By

a) b) )
Fig. 6 Reinforced panel: a) loaded by generalized Fourier series
components of loads, b) uniform loading for the equal expansion
coefficients, and c) reinforcement perturbation. The first components are
shown for illustrative purposes only.
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The first stress field is constant and represents a uniform axial
(xwise) loading condition; therefore, it is equilibrated and com-
patible. The elastic problem is completely determined by introducing
the stress function W:

\IJO = FXNXO.[ + rxyN)cyO + 1—‘y]\[yO (21)

where I',, T, and T', are the circulation functions [14] defined as

[o=0-1) (22a)
ny = —(X - lx)(y - lv) (22b)
Iy=(x— 1,)? (22¢)

The second stress field represents the boundary perturbation
introduced by the presence of the reinforcement. It is observed that
following this approach permits Fourier series expansion in only the
perturbation of the total load from the constant axial distribution N, ;
(Fig. 5). This perturbation occurs at the edge x = 0 and is such that
the total force resultant over the width is equal to zero.

The solution in terms of stress function was found by Timoshenko
and Goodier [15]:

N N
AV =" AW, = "sin(a,y)f, () (23)
n=1 n=1
where the xwise function f,(x) is in the form
fa(x) = ¢, cosh(w,x) + ¢, sinh(c,x) + c3,x cosh(c,x)

+ c4px sinh(o,x) 24)

Applying appropriate boundary conditions, the coefficients of
integration are obtained as

Cin = )"ln(An - Bn) (253)
Cop = )‘2}1 (An - Bn) (25b)
C3p = )‘3}1 (An - Bn) (25C)
Capn = )‘4}1 (An - Bn) (25d)
where
1
)\']n =— (263)
al‘l
1 — w,, sinh(w,,/,
Aoy =—— (@,1) (26b)
1 — (@, /ws;,) sinh(e,, [,
s, = (w1,/ 12;2) ( ) (26¢)
inh
Aoy = — sinh(w,[,) 26d)
lxaann
and
t 1
=) L @72
aﬂ lxan

Wy = (Sin(an) - lxan COS((X”))(DIH + lx Sin(an) (27b)

Using the principle of superposition, the resultant stress function
v, is

v
Y, =0+ ) AV, (28)

n=1
This function satisfies the following biharmonic equation:

P, PV 0,
ay* ax?ay? -~ ox*

=0 (29)

Equation (29) is the expression of the compatibility equation for
isotropic plates [15], in which the in-plane equilibrium is satisfied
because of the properties (4) of the stress function used. W, repre-
sents a particular solution of the isotropic elastic problem. As such,
it does not satisfy the compatibility Eq. (10). To enforce the com-
patibility condition, a supplementary stress function W, is super-
posed, which takes in to account the effect of orthotropy and
anisotropy. The additional stress function that must guarantee the
resultant stress function €2,

Q=1, + 0, (30)

satisfies the compatibility Eq. (10).
The equilibrium and boundary conditions are fulfilled by choosing
the supplementary stress function as

N, N,

Ne
W, =Y Eam(ny) =) & cos(@,y)g,(x) (1)

n=1 n=1 n=1

v, =

where &, are unknown coefficients and the xwise functions f, (x) are
in the form

gn(x) = 8in COSh(O{nx) + 82 Sinh(anx) + 83nX COSh(O{n)C)
+ 8anX Sinh(anx) + 85n (32)

The use of cosine functions as basis functions for the Fourier
expansion guarantees satisfaction of xwise equilibrium in terms of
total axial load:

/I“Nd [[ ” Awd
o Y o 0y Y

- a2 / " i) f (@ dy =0 ¥ x (33)
0

Coefficients g,,, 82, 834> and g4, can be calculated from Egs. (25—
27) by ensuring that the null loading condition is satisfied by A, =1
and B, = —1 and then substituting g,,, 2., &3> and gy, for ¢y, ¢,
c3,, and cy,, respectively. The coefficient g5, was introduced to
enforce nullity at edges x =0 and /,.

Equation (33) represents the condition that the total axial load
introduced by the compatibility stress function is averagely null
along every xwise cross section of the panel. Therefore, because of
the linearity of the biharmonic equilibrium equation, the resultant
stress function 2 = W, + W, satisfies the following biharmonic
isotropic equation in the average sense:

Iy (9*Q *Q *Q
—+2——+—-—|dy=0 V 4
A (8)74 + 0x20y? + 3x4) Y o 34

The fulfillment of the compatibility Eq. (10) is obtained by using a
Galerkin technique, as shown in Sec. IV.

IV. Prebuckling Model: Quasi-Nonlinear
Solution Strategy

The two governing equations (5) and (10) represent a system of
nonlinear coupled equations in w and 2. The nonlinearity is due to
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the transverse equilibrium Eq. (§), in which coupled products of the
in-plane stress function and transverse displacements are present.
Nevertheless, a more accurate analysis of the compatibility Eq. (10)
might be useful to approximate the solution. Substituting expressions
(11a) and (30) in Eq. (10) and carrying out the differentiations after
algebraic manipulations, we obtain

M XN, MxN

Z LE.ksk + Z Lw,jwj = LA + LxNxOJ + nyN)cyO + LyNyO

k=1 j=1

(35)
where

Lsk = A’l"lr]kyyyy - 2A;6’7k.xyyy + (A}, + Ag())nkixxyy

= 2A56Mk vy + Ao + (2471, — Al ey

+ (AT, = 3ATg, + AGe iy + QAL — 345,

+ Azﬁ,y)rlk.xxy + (2A§2 x Aﬁs;)’?k wx T (AT ot Al

AT6,xy)nk,y_V - (AT6,yy + A26,xx - 66<xy)rlk-~\‘)'

+ (ATZ,yy + A)ZkZ,)rx - A;6<X)')nkyxx (36)

va =

J

—B31¢) xexe + (Bg) — 2B30)¢; vy + (2Bgs — B
Bﬁz)(/’flww + (B 22 —2B Tﬁ)wjx,vy,v -B T2¢j<,vy.v,v —(B zl.y

= 2B3, )i + (2B, + Bgy o — 2B7) , — 4B36 )9y

+ (2B + Bty — 2B3, . — 4Bl )@y + (Biy,

= 2B, )@ gy + (Bé1y — Biiyy — B31,)®j + 2(Bs oy

- BT(),yy - B;G,xx)(pj.xy + (BzZ,Xy - BlZ.yy - 22,xx)(pj,xx = O

@37

Ly =—[A} AW, — 245 AW, + A}, + AL AV
— AW A+ ARAY L+ QAT — Al VAW
+ (2A12 X 3AT()V + A66X)A\IJ xyy + (2A12 y 3A;6x

66\)A‘I’xv£) + (2A22x A;G))A\I}X.XX_F (All)v +A12xx
- ATG,X}')A‘II,}‘Y - (A16.yy + A26,xx - AzG.xy)A‘Il,xy
+ (ATZ,yy + AZZ,XX - A;&xy)AlIJ,Xx] (38)
LX = _(ATI,)')' + ATZ‘xx - ATG.,\‘,V) (393,)
Ly = (AT + Al = Abo.ry) (39b)
ny = (ATZ‘.Vy + A;Z.xx - Azﬁ‘xy) (39C)

Equation (35) is transformed into a linear system of N, equations
in N, + M x N variables by using a Galerkin technique. This is done
by prioritizing the stress function: that is, by multiplying each side of
the equation by the compatibility eigenfunction 7, and enforcing the
zero component of error condition on each of the functions. The final
set of equations in compact form is

I: S& + L_ww = I_‘A + L_XNXO.I + L_xnyyO + l_‘yNyO (40)

The components of matrices L ¢gand L,andvectors L, L, L, and

L). are

X\’

— Iy Ix
(Lé)ij:/ f n;iLg; dxdy (41a)
o Jo
- ly [ix
(Lw)ij:/ / UiijdXdy (41b)
o Jo
— ly [lx
L, =/ / n;L,dxdy (42a)
0o Jo
ly [lx
= / f n;L,dxdy (42b)
o Jo
_ ly Ix
L,, =/ / n;L,dxdy (42¢)
o Jo
ly [lx
= / / n;L,dxdy (42d)
o Jo
Iy Ix MXxN MxN
/ / [ Z(soknso,v D @), W, }dxdy
Ix
~ / (w_x(V W, w,,)dedy =0 (42e)
o Jo

Notably, the nonlinear term involving the double summation in
Eq. (35) vanishes in Eq. (40). Weaver and Nemeth [16] demonstrated
that integrating over the entire domain [Eq. (42e)] and under the
assumption that all the panel edges belong to the same plane, the
double summation vanishes. As a result, the compatibility equation
expressed in discrete compact form by Eq. (40) is a linear equation in
w and §. To solve the discretized compatibility equation, the first
consideration is that the perturbation stress function (AW), the
natural boundary conditions (N,,o, N,), and the axial load boundary
condition on the edge x = 0 (N, ;) act as load terms in Eq. (40). The
second consideration is that the vector L, w is null or negligible in
the following two cases: 1) symmetric configurations and 2) very
small transverse displacements.

In reality, symmetric configurations are rarely achieved, due to the
local unsymmetric nature of the stiffener upon skin. For unsym-
metric, the components B;; of the coupling stiffness matrix could be
large. Hence, the product L ,w might be sufficiently large to affect
the in-plane load distribution, even in the linear regime. This effect
could be more significant for thin configurations, such as skin/
stringer assemblies employed in vertical and horizontal tail planes, in
which the eccentricity due to the stiffeners enforces a transverse
displacement field that is prominent in unbuckled configurations.
This study aims at quantifying this effect in terms of actual deformed
configuration and buckling loads. If only in-plane loads of small
magnitude are acting, the term L, w becomes negligible, and the
laminate’s structural response can be approximated with the sym-
metric model in which the total stress function 2 is well approxi-
mated by the equilibrium stress function v, [10]. Hence, by
approximating the in-plane stress field with the equilibrium stress
function and substituting Eqgs. (11a), (11b), and (28) in Eq. (5) and
performing the differentiations, a linear system of M x N equations
in the M x N variables w; is obtained:

(G+HW=—He+Q (43)

where
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and 2 = V,.

Equation (43) can be inverted to yield an approximate expression
for the transverse displacement. The induced error is assumed
negligible when the external loading is insignificant if compared with
the critical buckling level for the same loading condition:

W =—(G+H)'He 47)

Once the transverse displacement is known in terms of the
coefficients of its generalized Fourier series expansion, Eq. (40) can
be inverted giving the approximate expression of the total in-plane
stress function:

E = (l_‘é)il[l_‘w(G + H)lee + l_‘A + l_‘xNxO,I

+ L, N,y + L,N,] (48)

Equation (48) represents the generalized amplitudes for the
Fourier representation of V.. The updated value of 2 is calculated
and substituted into Eq. (47) to obtain an updated value of w. Then
successive calculations of €2 via Eq. (47) and w are done until
converged solutions are reached. Note that if the external in-plane
loads are comparable with their critical buckling level, then the step-
by-step approach just outlined must be employed to update the in-
plane stress field at the beginning of each step and to allow a more
accurate calculation of the actual transverse displacements.

Let

_ A:’xO,l
N() = Ny() (493.)
ny()
_ _ IYxO,[
N() cr = )"N NyO (49b)
ny()
Y, Ip

a)
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represent the acting load and the critical buckling load level,
respectively. The load path is discretized in a finite number N of load
steps ANy, = Ny/Np + 1, from the unloaded base state (k = 0) to
the actual load level NO (k= Np):

_ k -
Ngk:N—PNO

(50)

The subscript & is used to represent the generic variable calculated
at the kth step. The following algorithm is used for the approximate
calculation of the transverse displacement and the in-plane stress
function at each step k:

Wk = _(G + H(\Ijek + qu,.))P_I(\Ijek + \chk,|)e (Sla)
Ek = (l_‘f)_l {l_‘w[G + H("Ilek + "Ilck,l)]_] }_I(\I,e,< + lpck,])e
+ l_‘Ak + l_‘xNxO‘lk + l_‘xnyyOk + l_‘yNVyOk} (Slb)

For each step, the proposed algorithm replaces the actual value of the
compatibility stress function with the value taken at the end of the
previous step.

It is emphasized that because the actual transverse displacement’s
magnitude and shape affects the in-plane stress function, a sensitivity
of the in-plane stress distribution to the essential boundary conditions
for the transverse displacement is expected. Let us consider, for
example, two identical unsymmetrically laminated panels loaded by
the same system of in-plane loads, but with different kinematical
boundary conditions. It is realistic to expect the behavior of the panel
subjected to more restrictive (in terms of transverse displacements)
boundary conditions to be reasonably approximated by the
symmetric model because the effect of the coupling matrix B is
minimized.

V. Model Validation and Buckling Singularities

A composite assembled panel (Fig. 7a), consisting of a square skin
and a rectangular reinforcement (patch), was analyzed to compare
this analysis with the symmetric model proposed by Cosentino and
Weaver [10] and to assess the differences and their causes.
Furthermore, both models were compared with FEM.

The in-plane stress field calculated by means of the proposed
analytical solution was first compared with FEM. In-plane normal
forces arising along the sections indicated in Fig. 7b were compared.
The finite element simulations were done using ABAQUS com-
mercial software. The domain was discretized by means of quadratic

quadrilateral elements S8R [17]. Each square has a 2 mm edge length
(Fig. ).

An offset was assigned to all the elements that represent the skin-
reinforcement overlap region. The offset equals the difference of the
two xwise neutral planes, overlap and skin regions, respectively.
Material properties and geometrical parameters are reported in
Tables 1 and 2, respectively. Stacking sequences are reported in
Table 3.
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Fig. 7 Reinforced panel: a) geometry and b) plant view.
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Fig. 8 Finite element model mesh detail.

The enforced boundary conditions consist of simple supports
along all of the edges. Functions (31) were employed to model the
compatibility stress function W,.. The following functions were used
to expand the eccentricity e and the components Aj; and Bj; of the

matrices of in-plane flexibility and coupling, respectively [3]:

- in(l, —x)
X;=1-cos (Z—ZX) (52a)
¥, =sin (’lﬂ) (52b)
y

A total of 10 eigenfunctions were employed for each coordinate.
Similarly, a total of 10 functions were used to calculate and express
the perturbation stress function AW by means of Eq. (23). A
crosswise product superposition of eigenfunctions (10 per each
coordinate) of simply supported beams were used to expand the
transverse displacement w:

X, = sin(l]lTx) (53a)
Y, = sin(Jlﬂ) (53b)
\

Table 1 Lamina properties

Component E;,MPa E;, MPa G;r,MPa v;; Thickness, mm

Patch 150,000 8,800 4,800 0.35 0.2
Skin 150,000 8,800 4,800 0.35 0.2

Table 2 Geometrical parameters

Parameter Value
I, mm 100
ly, mm 100
lp, mm 50
b, mm 20

Table 3 Stacking sequences

Configuration Component Stacking sequence

1 Patch [45/ — 45]
2 Skin [0/90]

A total of 20 load increments were used to solve Egs. (51a) and
(51b).

The structural response to the applied compressive axial load N, ;
(Fig. 7b) was simulated. Two different cases were analyzed. In the
first simulation, the two opposite unloaded edges b and d (Fig. 7b)
were free to move in the y direction and did not restrain the shear
deformation induced by the nonnullity of Afs. As a result, the in-
plane stress field was mainly dominated by the axial compression.
An axial load N,,; =—0.58 N/mm was applied. The transverse
displacements predicted by this analysis are reported in Fig. 9a.
Figure 9b shows the transverse displacements predicted by the
simplified symmetric model.

As shown, this analysis predicts larger transverse displacements
when compared with predictions obtained from the symmetric
model. The predicted deformed shapes are very similar in both cases.
To assess the predicted quasi-nonlinear behavior and quantify the
effect of asymmetry, the maximum amplitudes of predicted
transverse displacements are plotted against the external load and
compared in Fig. 10.

As expected, the error induced by using the simplified symmetric
model is negligible when the external loading is insignificant
compared with the critical buckling level for the same loading
condition. When the load becomes larger and comparable to the
buckling load, the effect of the transverse displacement becomes
significant in the compatibility Eq. (51b). In-plane load redistribu-
tions are predicted, which cause the compatibility stress function ¥,
to be comparable in magnitude to the equilibrium stress function W,
thus influencing the calculation of the H and H matrices. Hence, the
calculated transverse displacements begin to diverge. The in-plane
load N, calculated by means of the equilibrium stress function
(equal for both symmetric and unsymmetric models), and the
additional N, . calculated by means of the compatibility stress
function, were calculated at the actual load level. Results are reported
in Fig. 11.

As shown in Figs. 11b and 11c, there is noteworthy in-plane loads
redistribution triggered by the transverse displacements. The
difference between the two approaches becomes appreciable as soon
as the actual applied in-plane loads approach their critical values.

Two considerations are necessary:

1) When the external loading system is sufficiently close to its
critical magnitude, Eq. (43) cannot be straightforwardly inverted as
the determinants of both the G and H matrices are close to zero. The
reason is implicit in the mathematical definition of buckling. The
critical loading condition causes a simultaneous diagonalization of
both matrices; resulting in an important decrease of accuracy, and
reliability of both models cannot be avoided.

2) If the maximum absolute value of the transverse displacement
Wnax reaches the threshold beyond which the linear approaches
become inadequate, a fully nonlinear approach is required to obtain
accurate structural responses. This threshold is generally expressed
in terms of the ratio between transverse displacement and skin
thickness. Typically, the beginning of geometrically nonlinear
regimes is defined for values of this ratio that exceed 0.1-0.2 [18].

For illustrative purposes, a second analysis was undertaken on the
same configuration and enforcing the same boundary conditions.
The external in-plane load N,,, ; was set to —1.5 N/mm. The maxi-
mum amplitudes of predicted transverse displacements are plotted
against the external load and compared in Fig. 12.

As shown in Fig. 12, there are peaks which correspond to buckling
onsets. In the proximity of the first peak, and for all loads exceeding
this value, the approximate nonlinear model is no longer suitable to
solve the analyzed problem. The same analysis was carried out by
imposing a tensile external load of the same magnitude. The maxi-
mum amplitudes of predicted transverse displacements are plotted
against the external load and compared in Fig. 13.

As evident, the difference between the two models increases with
the transverse displacement, but at a much smaller rate. The effect of
tensile loads is, in fact, a notable reduction of the transverse
displacements induced by the eccentricity. As a consequence, both
models supply similar responses and their range of validity is notably
widened.
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Fig. 10 Compared maximum transverse displacements.

In a second simulation, the ywise displacements of the two
opposite unloaded edges b and d (Fig. 7b) were restrained in
addition to the shear deformation induced by the nonnullity of Aj.
As a result, no predominant direction can be specified for the in-
plane stress field. A compressive axial load N,,; = —1.5 N/mm
was applied. The maximum amplitudes of predicted transverse
displacements are plotted against the magnitude of the external load
and compared in Fig. 14.

The responses of both models are reasonably similar in the linear
regime and begin to diverge as the transverse displacements become
significantly large compared with the skin thickness. Once again,
the reasons for the divergent responses lie in the in-plane loads
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Fig. 12 Compared maximum transverse displacements for in-plane
loading exceeding the critical buckling load.

redistribution due to the asymmetry. For small displacements, the
component of in-plane loads due to the compatibility stress function
is negligible compared with the equilibrium components; that is, the
in-plane stress field is dominated by the load term represented by the
natural boundary conditions [refer to Eq. (§1b)]. As the external
loads increase in magnitude, the equilibrium load term increases
linearly, as shown by Eq. (35), while the effect of the transverse
displacement increases at a larger rate. In fact, compressive loads
exacerbate the internal bending due to transverse displacement,
triggering a magnifying effect on the displacements magnitude. This
phenomenon is diminished in the case of tensile external loads.

N: » Nfmm
o o
o = N

& o
N

c)

Fig. 11 Example of internal in-plane axial loads: a) equilibrium component, b) compatibility component for the symmetric model, and c¢) compatibility

component for the unsymmetric model.
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Fig. 14 Compared maximum transverse displacements for in-plane
loading exceeding the critical buckling load.

The predicted peaks give no information about the structural
response but show that panel buckling onset is located in the region of
load magnitude that is underneath the displacement peak. As pre-
dicted, the peaks show a discernible reduction of buckling load due to
biaxial compression being triggered by restraining the Poisson’s
transverse (ywise) expansion of the panel.

As the in-plane load increases in magnitude, internal in-plane load
redistributions occur. To confirm this behavior, the in-plane longi-
tudinal stress resultants N, were calculated at two different load
magnitudes using both models. The critical buckling load calculated
by means of the symmetric model was used as the reference load.
Results are illustrated and compared in Figs. 15-17.
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Fig. 15 Compatibility components of axial in-plane stress resultant for
section CC (midbay).

Both models predict reasonably similar distributions when the
external load level is small compared with the buckling load. As the
external load increases, clear evidence of load redistribution is
predicted by this analysis. Itis noteworthy to observe that not only the
deformed shapes of unsymmetrically laminated panels are skewed in
appearance; this behavior also extends to the shape of in-plane loads
distributions. This effect is clearly noticeable in Fig. 17 in which the
spanwise distributions of longitudinal stress resultants are plotted
along two sections [namely, BB and EE (refer to Fig. 7)], which are
symmetrically located with respect to the panel’s longitudinal axis of
symmetry. Load redistributions are notable from small values of the
external load and become more significant as the load increases in
magnitude.

VI. Sensitivity Analysis and Buckling
Calculation Procedure

Results obtained in the previous section suggest that considerable
in-plane loads redistribution might occur during the prebuckling
regime. In the aerospace industry, for sizing purposes, the effect of
transverse displacements on the buckling calculation is sometimes
taken into account by introduction of semi-empirical knockdown
factors used to adjust the linear analysis. Let us consider, for
example, a symmetrically laminated flat composite panel preloaded
by transverse pressure and then undergoing uniaxial compressive
load. If the magnitude of pressure is sufficiently large to trigger
significant transverse displacements (for instance, in thin-sectioned
panels), but not enough to cause important membrane stretching,
then the buckling loads calculated with and without considering the
pressurization phase are identical. The effect of the pressure is
comparable to an initial perturbation and the classical two-
dimensional Euler’s formulation remains valid. In the linear regime,
as the external load increases in magnitude, the in-plane stresses
distribution typically varies in a self-similar manner. Hence, the
calculation of buckling loads does not depend on the actual level of
the external loads. In contrast, Eq. (10) and Figs. 15-17 reveal that in-
plane stress redistribution takes place in unsymmetric configurations
such as stringer terminations undergoing relatively large transverse
displacements, and are coupled with the in-plane loading due to the
eccentricity of the neutral plane. As the magnitude of the external
loads increase, such configurations exhibit in-plane stress distri-
butions that vary in a manner that is not self-similar. Therefore, the
calculation of buckling loads can be significantly affected by the
actual maximum load level input to compute the iterations (51a) and
(51b) and solve the eigenvalue problem. Equations (49a) and (49b)
suggest that the calculation of buckling loads becomes more and
more accurate as the actual external load N, approaches the critical
load N, . Furthermore, results shown in Figs. 12 and 14 show that
when the actual load exceeds the buckling load, numerical inst-
abilities are generated when solving the eigenvalue problem. There-
fore, to obtain reliable results, the value of the maximum external
load input and used to calculate buckling loads must tend to the
critical load from the left:

Ny < Ny (54)

The closer the actual load to the critical value, the more accurate
the linear calculation of buckling loads, based on the eigenvalue
problem applied to Eq. (47).

Therefore, the use of an initial guess, which is as large as possible,
is generally recommended to improve the effectivity of the proposed
analysis. However, there is an additional constraint due to the limits
of applicability of the this model. In fact, if the maximum value of the
nondimensional ratio w/#, (where w is the transverse displacement
and 7, is the skin thickness) exceeds the threshold value that typically
delimits the linear from the nonlinear regime, then the validity of the
results obtained by means of this approach might be rather inaccurate
and a fully nonlinear approach would be required. The value of 0.2
[18] was chosen for the aforementioned threshold value as the break
point for the calculation subroutine used to validate this model.
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Fig. 17 Axial in-plane stress resultant for sections BB and EE.

Two main parameters are recognized to affect the degree of
accuracy of this analysis 1) the magnitude of the initial guess Ny, and
2) the total number of load increments Nok-

With regard to the first parameter, the approach employed is
described in the following steps:

1) The buckling load calculated by means of the symmetric model
is used as a first guess.

2) The interval [0, NO] is divided into a number N, of equal steps,
each of them representing the discrete load increments Nok defined in
Eg. (50).

3) Iterations (51a) and (51b) are performed until one of the
following conditions is reached: a) wy,,,/t, = 0.2 or b) k x Nokz
0.95 x NO,crk’ where NO_C” is the critical buckling load calculated
using the actual load distribution at the end of each step.

4) If none of the preceding conditions are verified, the initial guess
is incremented by the nominal load increment Ny

Time, s
1 1EI 5 10 15 20 25 30 35 40
7105
2 Pure compression
Z P!
= shear/compression=1
1 L
Pure Shear
095 1 1 1 1
u] 20 40 B0 80 100

Number of load steps, Np
Fig. 18 Compared buckling loads and sensitivity analysis.

5) Iterations 1-4 are performed until either the magnitude of the
initial guess N or the total number of load increments N, is reached.

With regard to the total number of steps used to discretize the load
interval, a sensitivity study was undertaken to assess this effect and to
choose a suitable number of load steps, which guarantees the best
compromise of accuracy and calculation time. The buckling loads of
the reinforced panel illustrated in Sec. V were calculated and
compared with a nonlinear FEM calculation for three different load
cases. Results are reported in Fig. 18.

Although the total number of steps required to achieve conver-
gence appears large, after 30 steps the convergence slope is suffi-
ciently small to consider that the algorithm has converged.
Computational times are reported in the axis located on top of Fig. 18.
Itis noted that an average time that is between 10 and 15 s is required
to complete the full analysis. This study was, of course, limited to the
case of the panel studied in Sec. V and further sensitivity analyses
would be required to thoroughly investigate the numerical behavior
for a variety of configurations and kinematical boundary conditions.
However, this is beyond the scope of the present study. The aim of the
sensitivity analysis performed was to set a number of steps to perform
reliable buckling analyses and subsequent comparisons with FEM.

VII.

Buckling interaction curves were derived for a variety of cases
using both the symmetric and the unsymmetric models. Results were
compared with FEM. In the first batch of analyses, the interaction
curves were obtained for the panel analyzed in Sec. VI. Two different
sets of boundary conditions were considered. The sets include all
edges simply supported and all edges built in, respectively. Results
are reported in Figs. 19a and 19b. In addition, buckling interaction
curves are calculated for a typical aerospace composite wing
assembly consisting of a T-sectioned composite stringer and a skin.
The panel is illustrated in Fig. 20. The same lamina properties were
assumed for both assemblies and details can be found in Table 1.
Geometry and stacking sequences are reported in Tables 4 and 3,

Buckling Interaction Curves
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Fig. 19 Interaction curves for skin/patch-type panel.

Fig. 20 Stiffened composite panel.

respectively. Comparisons with FEM are illustrated in Figs. 21a and
21b.

It is noteworthy that the effect of asymmetry is, in the examined
cases, unfavorable. If taken into account by means of more accurate
models in conjunction with fully (FEM) or approximate (this
analysis) nonlinear calculations, the calculation of buckling loads
results in a considerable reduction, especially when the axial
compression is the main component of the external loading.

Notably, two FEM analyses (namely, linear and nonlinear) were
done to assess the effect of load redistribution. In the linear case, a
small axial load was input and buckling loads were calculated using
the linear perturbation buckling calculation [17]. For the nonlinear
calculation, two steps were defined that replicate the analytical
strategy. A first nonlinear step was defined in which the external load
was set to a value equal to 80% of the linear buckling load calculated
previously by means of the linear perturbation method. Then, linear
buckling analyses were performed on the actual deformed confi-
guration. It is noted that the calculation time needed to derive each

Table 4 Geometrical parameters

Parameter Value
., mm 200
[,, mm 100
l}, mm 50
Byep, MM 30
b, mm 20

Table 5 Stacking sequences

Component Stacking sequence

Web [0/90/0/0/ —45/0/45/0/45/0/ — 45],
Flange [0/90/0/0/ —45/0/45/0/45/0/ — 45]
Skin [0/45/0/ —45/90/0]s

point on the interaction curves is between 100 and 120 s with FEM.
When compared with 15 to 20 s required by this model, it justifies the
choice of the proposed analytical approach. Furthermore, it must be
highlighted that the calculation times do not take into account the
model setup, which is the most expensive phase in terms of time for
the FEM. This approach was implemented in a fully parametric tool
that required negligible setup time, thus increasing the associated
advantages.

Figures 19 and 21 show that the effect of load redistribution is
captured by FEM and significantly affects the buckling loads. Also,
both the analytical approach and the FEM predict differences
between the linear and nonlinear approaches that increase as the
shear/compression ratio tends to zero (i.e., pure axial compression).
Therefore, the perturbation introduced by the stiffener significantly
affects the axial in-plane load distribution, but it produces minor
effects on in-plane load redistribution when the panel is loaded in
shear. Furthermore, as expected, the disagreement of both predic-
tions is larger in the simply supported case than in the case in which
all the edges are built in. The latter boundary condition is more
restrictive in terms of induced transverse displacements; therefore,
the effect of the coupling stiffness matrix B is, to a certain extent,
reduced as predicted by the compatibility equation. The degree of
asymmetry was particularly exacerbated in the skin/patch-type panel
for illustrative purposes. Of course, stacking sequences and geo-
metry chosen are not representative of typical aerospace structures.
In contrast, the composite assembly illustrated in Fig. 20 can be
considered as an example of real substructure. Although made of a
symmetric skin, the structural behavior of such a structure is
influenced by the geometrical asymmetry due to the presence of the
stringer. Referring to Fig. 4, the skin/flange/web and the skin/flange
sections are intrinsically unsymmetric. The degree of asymmetry is
reduced if a tall web is used, so that the section can be idealized as
web only, and the local influence of flange and skin is negligible.
However, as the web height increases, the B matrix increases in
magnitude and its effect on the global structural response can be
important. Furthermore, the secondary bending introduced increases
with the web height, triggering significant transverse displacements.
Hence, the combined effect of the components B,; and the transverse
displacements is noteworthy. Therefore, panels with stringer run-
outs exhibit structural behavior that is intrinsically unsymmetric. As
such, to systematically calculate the critical buckling loads, an
analytical or FEM model able to capture load redistributions by
means of step-by-step procedures might be required. It is important
that the procedure adopted follows the guidelines provided in
Sec. VI: that is, that the actual load tends to the critical buckling load
from lower values. Also, the calculation of buckling loads should be
performed at the end of each step to ensure that the actual load has not
exceeded the buckling load. In fact, in such a case, the linear
calculation would be effected by different load redistributions that
are triggered in the unstable regime, but are not present within the
stable regime. A nonlinear buckling calculation is recommended and
should be preferred to other methods, such as bifurcation analyses.
As shown in this study, in highly eccentric configurations, the
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Fig. 21 Interaction curves for stiffened composite assembly.

transverse displacements can be significant, even during the
prebuckling loading phase. Snap-through phenomena and sudden
bending, on which the bifurcation analyses are based, may not take
place. Therefore, it is extremely difficult to estimate buckling loads if
the transition from stable to unstable regimes is smooth.

Finally, it is noteworthy that satisfying equilibrium appears more
important than satisfying compatibility. Figures 11 and 15-17, show
that in the stable regime and for loads approaching the buckling level,
the average ratio between compatibility stress function i, and the
equilibrium stress function v, is between 1/10 and 1/5. The same
ratio is observed between the maximum transverse displacement and
the skin thickness. As a preliminary conclusion, the compatibility
component to the overall stress function €2 can be considered as a
perturbation when the transverse displacements do not exceed a
threshold delimiting the linear and the nonlinear regimes. Additional
studies are required to further assess the effect of satisfying
compatibility in highly nonlinear regimes, such as those occurring in
postbuckled structures.

VIII. Conclusions

A hybrid meshless approach was developed and used to predict
prebuckling and buckling of discretely assembled multibay
composite panels made from skin and stiffeners. Numerical results
obtained were compared with FEM and show very good correlation
in terms of in-plane loads distribution and buckling loads calculation.
The effect of eccentricity on the calculation of buckling loads was
highlighted in the case of this analysis and for analyses done with
FEM. A strong link between nonlinearity and eccentric/unsymmetric
configuration was substantiated. The intrinsic limitations of the
proposed approach were discussed. However, a thorough deploy-
ment of this approach or the FEM procedure proposed hereby could
require further tuning and calibration studies that were beyond the
scope of this study. For example, the tolerances could be modified to
fit with available experimental data. The main aim of this paper was
to highlight and quantify discrepancies that could arise when simple
models are used to simulate more complex configurations, such as
composite panels with stringer terminations, and to propose a fast
method for preliminary (but careful) structural assessments.
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